Nonparametric Test for Eigenvalues of Covariance Matrix in Multipopulation

نویسندگان

  • Hidetoshi Murakami
  • Emiko Hino
  • Shin-ichi Tsukada
  • HIDETOSHI MURAKAMI
چکیده

We propose a nonparametric procedure to test the hypothesis that the j-th largest eigenvalues of a covariance matrix are equal in multipopulation. We apply the Mood test by using the principal component scores and deal the equality of eigenvalues with the equality of variance. We investigate the significance level and the power of test by simulation and show that this nonparametric test is useful for symmetric populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NONPARAMETRIC EIGENVALUE-REGULARIZED PRECISION OR COVARIANCE MATRIX ESTIMATOR BY CLIFFORD LAM London School of Economics and Political Science

We introduce nonparametric regularization of the eigenvalues of a sample covariance matrix through splitting of the data (NERCOME), and prove that NERCOME enjoys asymptotic optimal nonlinear shrinkage of eigenvalues with respect to the Frobenius norm. One advantage of NERCOME is its computational speed when the dimension is not too large. We prove that NERCOME is positive definite almost surely...

متن کامل

Nonparametric Eigenvalue-Regularized Precision or Covariance Matrix Estimator

We introduce nonparametric regularization of the eigenvalues of a sample covariance matrix through splitting of the data (NERCOME), and prove that NERCOME enjoys asymptotic optimal nonlinear shrinkage of eigenvalues with respect to the Frobenius norm. One advantage of NERCOME is its computational speed when the dimension is not too large. We prove that NERCOME is positive definite almost surely...

متن کامل

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Some Hypothesis Tests for the Covariance Matrix When the Dimension Is Large Compared to the Sample Size by Olivier Ledoit

This paper analyzes whether standard covariance matrix tests work when dimensionality is large, and in particular larger than sample size. In the latter case, the singularity of the sample covariance matrix makes likelihood ratio tests degenerate, but other tests based on quadratic forms of sample covariance matrix eigenvalues remain well-defined. We study the consistency property and limiting ...

متن کامل

Localization of Eigenvalues in Small Specified Regions of Complex Plane by State Feedback Matrix

This paper is concerned with the problem of designing discrete-time control systems with closed-loop eigenvalues in a prescribed region of stability. First, we obtain a state feedback matrix which assigns all the eigenvalues to zero, and then by elementary similarity operations we find a state feedback which assigns the eigenvalues inside a circle with center   and radius. This new algorithm ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008